
To disclosable computing through concrete
abstractions

Substrate vision statement
Google docs version
Antranig Basman

What is a substrate?
Jonathan Edwards defines a substrate as embodying the following properties:

1.​ A complete and self-sufficient programming system,
2.​ with a persistent code & data store,
3.​ providing a direct-manipulation UI on that state.
4.​ Supports live programming.
5.​ Programming & using are on a spectrum, not distinct.
6.​ Conceptually unified — not a “stack”.

Summarized as a slogan: “A PL, DB, & WYSIWYG document unified together.”

Whilst I subscribe to all of these points, in my vision most of them are not essential definitional
aspects, but instead essential possibilities – that is, that the substrate should be designed in such a
way that they can be brought into view or “disclosed” idiomatically in a context where they are
relevant.

For example, direct manipulation and live programming may not be appropriate or necessary for
many users of a particular substrate's deployment – they may prefer to view it as a regular
application, indistinguishable from one not built on a substrate, or even as a static document. But
the path to bringing these capabilities into view should be reasonably direct and not involve a
fundamental change in the structure of the application.

Substrates and Malleability

Out of these 6 properties, to me the definitional point is #5: “Programming & using are on a
spectrum, not distinct.”. This is also the core intersection with the Malleable Systems Collective,
whose principle #1 is “Software must be as easy to change as it is to use it”. Comparing the
properties with the collective’s own principle 6:

6. Modifying a system should happen in the context of use, rather than through some
separate development toolchain and skill set

 – I see the same “loosening” of this principle as desirable. Modifying a system should be possible
and idiomatic in the context of use, but this should not also preclude the use of more or less
standard toolchains or skillsets that can be used to work on the system by specialists.

https://docs.google.com/document/d/1gOLY99K8ogOPQpRe1gSBDkwwu8EoFsWJmg1r42syctA/edit?usp=sharing
https://docs.google.com/document/d/1lusMaZXnTsZugXYx94MQtHIkv7k7Q5hjL7YCHxVOfDA/edit?usp=sharing
https://ponder.org.uk/term/disclosable-computing/
https://malleable.systems/

Disclosure and Integration
Boxer is in my opinion the most successful substrate satisfying Jonathan’s principles. We can learn
a lot from its community. Henri Picciotto, a Berkeley Mathematics educator, wrote in Boxer: A
Teacher’s Experience (2022) of 19 years of his students’ experience with Boxer, that it “defied their
expectations of how to interact with their machines”, felt “bland and antiquated”, and that by the end
that they hated it. I argue a big contributor to this is that, despite its many great virtues, Boxer has
no model for disclosure of its capacity for computation – the controls for executing and modifying
boxes are always visible.

We can’t build substantial communities for substrates unless we can use them to build interfaces
which are seen as wholly satisfactory by communities. This implies that, if deployed as web pages,
they use standard layout technologies, can render statically and don’t incur appreciable costs on
startup. This unpacks the 6th property of a substrate – whilst it does not “form a stack”, it should be
able to coexist naturally amongst the levels of stacks that exist. This brings in an important strand in
the literature, Stephen Kell’s notion of an integration domain, described in The Mythical Matched
Modules (2009).

In an integration domain,

●​ languages and tools are specialised towards composition of software, and so do not
resemble conventional languages

●​ relations are expressed between runtime values, predicated on the context in which they
occur

Through Stephen’s principle of interface hiding, dependencies do not explicitly manifest themselves
in the domain except through the contextualised values which the domain puts into relation.

Composition and Components

Central to its role as an integration domain is the model for composition that a substrate establishes.
A composition model determines how parts of designs written separately can be combined.
Traditionally in software engineering this implies a model for reuse – that it’s possible to bring parts
of a design written elsewhere into one’s own, by referring to them, rather than copying them. Again
we can learn from Boxer’s community – Andy diSessa has written about the negative impact of a
component-based composition model on community agency in Issues in Component Computing: A
Synthetic Review. Components brought in by reference are opaque and mostly impossible to
modify. This led to Boxer’s standard model of “reuse by lithification” – useful code is simply copied
into one’s world. This is naturally an unscalable approach but an essential one for small-scale
communities.

Notions of reuse in traditional programming are tied to notions like “objects” or “types”. These need
to be completely reconceived in the context of a substrate. Stephen Kell’s In Search of Types (2014)
covers many of these notions very well – especially two non-orthogonal senses of the notion of an
“abstraction”.

1.​ (Parnas et al, 1976) “an abstraction is a concept that can have more than one possible
realization”

2.​ “abstractions as a repertoire of things that we can refer to”

https://boxer-project.github.io/
https://www.mathed.page/t-and-m/boxer-2022.pdf
https://www.mathed.page/t-and-m/boxer-2022.pdf
https://ponder.org.uk/term/disclosable-computing/
https://ponder.org.uk/term/integration-domain/
https://www.cl.cam.ac.uk/research/srg/netos/papers/2009-kell2009mythical.pdf
https://www.cl.cam.ac.uk/research/srg/netos/papers/2009-kell2009mythical.pdf
https://boxer-project.github.io/boxer-literature/papers/Issues%20in%20Component%20Computing,%20A%20Synthetic%20Review%20-%20ILE%20(diSessa,%20Azevedo,%20Parnafes,%202003).pdf
https://boxer-project.github.io/boxer-literature/papers/Issues%20in%20Component%20Computing,%20A%20Synthetic%20Review%20-%20ILE%20(diSessa,%20Azevedo,%20Parnafes,%202003).pdf
https://ponder.org.uk/term/lithification/
https://www.cs.tufts.edu/~nr/cs257/archive/stephen-kell/in-search-of-types.pdf

We are interested in primarily the second notion1. With respect to the notion of types, a popular
definition (Krishnamurthi, 2003) is “any property of a program we can determine without executing
the program”. If a substrate folds together the contexts of design and execution, this notion of a type
largely collapses. Indeed, Jonathan Edwards’ description of Subtext 10 declares “Subtext has no
syntax for describing types: it only talks about values” and also “Concrete values serve as witnesses
of types”.

My notion of an integration domain, implemented in my work in progress substrate, Infusion,
features concrete abstractions. These are blocks of pure state, with a natural representation in
JSON, which are treated as aligned layers. Rather than being composed at build time in the
machinery of a compiler as types or classes, and perhaps largely erased at runtime, they are
composed in the running substrate in a visible way, with the resulting merged structure allowing
access to the provenance of each separate layer. The system state is determined by the complete
contents of such layers which, since it is intelligibly serialisable, is easy to transport from place to
place as well as store in traditional backends such as GitHub or more fruity ones such as ShareJS
or Automerge. This solves the image problem of some pseudo-substrates such as Smalltalk where
the design content of the running system can diverge over time and can only be manipulated as a
whole by loading it.

A successful substrate needs to minimise what I call divergence – the discrepancy between its
runtime state and the state from which it can be authored. This implies minimising reliance on
traditional runtime storage such as the stack and the heap with their coordinates which are
meaningless in the visible substrate. Instead, the substrate needs to make it easy to trace causes
from effects – given any piece of the UI, to be able to fully explain the causes that led it to be that
way and intervene with them. This is consistent with Michel Beaudouin-Lafon’s role of an
information substrate in Towards Unified Principles of Interaction (2017). A related treatment is Don
Norman’s Gulf of Execution as discussed in Jonathan’s Subtext: Uncovering the Simplicity of
Programming (2005).

Errors and Asynchrony

A successful substrate needs to solve several other problems for its users. Firstly the notion of
errors, especially what were once design-time errors, need to be surfaced in the substrate as it
runs. Boxer’s model for this is a good example – a faulty reference for example results in a message
displayed on the surface of the substrate which is then navigable to the site of the error. Common
reactive libraries offer little support for recognising and propagating these errors, as well as tracing
them back to the part of the substrate responsible.

Secondly, we need to deal gracefully with asynchrony – both in terms of operating on
asynchronously available data, as well as asynchronous demands for “code” within the substrate as
it evaluates. Successful user programming systems do not bother the user with issues relating to
whether values are available right now or require I/O which again stems from the faulty reliance on
the program stack underlying runtime state. Traditional programming languages make this a viral
issue affecting the semantic of the whole codebase as per Bob Nystrom’s What Color is Your
Function.

1 Although I do see a role for “opportunistic abstractions” in terms of spotting the “coeffect image” of a
replaceable unit of configuration’s unbound references and helping the user to see if another unit would fit.
This is a kind of dual of the role of “opportunistic types” emerging through looking at the structure of concrete
value witnesses.

https://github.com/JonathanMEdwards/subtext10/blob/master/doc/language.md#types
https://github.com/fluid-project/infusion-6
https://stackoverflow.com/questions/3561145/what-is-a-smalltalk-image
https://ponder.org.uk/term/divergence/
https://hal.science/hal-01614273/document
https://www.subtext-lang.org/OOPSLA05.pdf
https://www.subtext-lang.org/OOPSLA05.pdf
https://journal.stuffwithstuff.com/2015/02/01/what-color-is-your-function/
https://journal.stuffwithstuff.com/2015/02/01/what-color-is-your-function/

Interestingly it seems like both of these issues can be dealt with under a common scheme. We
allocate a special kind of payload to a reactive function, an unavailable value which accumulates
the addresses in the substrate which are responsible for design incompletion for any reason – e.g.
whether the syntax underlying the substrate is incorrect, or a I/O request is pending. The reactive
graph short-circuits on these values, accumulating their payloads much as exception handlers did in
conventional languages. This allows the user to continue working with those parts of the substrate
which don’t depend on these unavailable values as normal, whilst being able to direct their attention
to the addresses where the design might need to be corrected if necessary – again, in allowing
causes to be traced visibly from effects.

Why improve notations if all code will be written by AI?

I argue that the time has never been more favorable for the substrates community. Rather than
representing programming as a “solved problem”, LLM generation of code heightens existing
problems of code oversight and management of technical debt, as well as offering new
opportunities. As I write in An Era for New Notations, notations which make it easier to determine
whether a code structure aligns with the intentions of a community by minimising divergence are
more attractive than ever, as well as the incumbency advantages of existing notations being diluted
through the availability of quick and reliable LLM translation.

Upcoming challenges:

Better reactive primitives:

Whilst miniAdapton of Hammer et al (2016) seems to offer somewhat more forgiving semantics than
current “best of breed” JS signals implementations in the case of dynamic allocation of signals
during a computation, it feels like there’s a lot of room for improvement in this area, re. issues such
as supporting writeable computed values, supporting cyclic graphs of reactive values and/or
bidirectional relations. These cases are coming up a lot in Infusion development. Likely there are
ideas in Jonathan’s Coherent Reaction that can be applied.

Better layout primitives:

In the spirit of “living within the stack with stack goggles” I would like to see some scheme for
gracefully embedding a more humane layout system within CSS. Systems such as CSS0 are far too
primitive, yet full-blown CSS frameworks I’ve looked at are prohibitive at the user level. A system
such as LayoutIt can spit out some Bootstrap definitions given some visual tinkering but it is closed
source. Cassowary-based constraint systems such as GSS are promising for people willing to leave
real browsers behind.

References:

Beaudouin-Lafon, M. (2017). Towards Unified Principles of Interaction. In Proceedings of the 12th
Biannual Conference of the Italian SIGCHI Chapter (CHItaly '17) (pp. 1–2). ACM.​

diSessa, A. A., Azevedo, F. S., & Parnafes, O. (2004). Issues in Component Computing: A synthetic
review. Interactive Learning Environments, 12(1–2), 109–159

https://ponder.org.uk/post/2025-04-19-new-notation-era/
https://www.subtext-lang.org/Onward09.pdf
https://github.com/bkil/gemiweb0/
https://layoutit.com/
https://gss.github.io/
https://hal.science/hal-01614273/document

Edwards, J. (2005). Subtext: Uncovering the simplicity of programming (OOPSLA '05) (pp.
505–518). ACM

Edwards, J. (2009). Coherent Reaction. In Proceedings of (OOPSLA '09) (pp. 925–932). ACM.

Fisher, D., Hammer, M. A., Byrd, W. E., & Might, M. (2016). miniAdapton: A minimal implementation
of incremental computation in Scheme. arXiv. https://arxiv.org/abs/1609.05337​ResearchGate+4

Kell, S. (2009). The mythical matched modules: Overcoming the tyranny of inflexible software
construction. In OOPSLA '09) (pp. 881–888). ACM.

Kell, S. (2014). In Search of Types. In Proceedings of (Onward! 2014) (pp. 227–241). ACM.

Picciotto, H. (2022). Boxer: A teacher’s experience. In Boxer Salon 2022, part of the ‹Programming›
2022 conference. Retrieved from https://www.mathed.page/t-and-m/boxer-2022.pdf

https://www.subtext-lang.org/OOPSLA05.pdf
https://www.subtext-lang.org/Onward09.pdf
https://arxiv.org/abs/1609.05337
https://github.com/LightAndLight/mini-adapton?utm_source=chatgpt.com
https://www.cl.cam.ac.uk/research/srg/netos/papers/2009-kell2009mythical.pdf
https://www.cs.tufts.edu/~nr/cs257/archive/stephen-kell/in-search-of-types.pdf
https://www.mathed.page/t-and-m/boxer-2022.pdf
https://doi.org/10.1145/1639950.1640051

	To disclosable computing through concrete abstractions
	Substrate vision statement
	What is a substrate?
	Substrates and Malleability
	Disclosure and Integration
	Composition and Components
	Errors and Asynchrony
	Why improve notations if all code will be written by AI?
	Upcoming challenges:
	Better reactive primitives:

