
The Open Authorial Principle
Supporting Networks of Authors in Creating Externalisable Designs

Antranig Basman
Raising the Floor - International

UK
amb26@ponder.org.uk

Clayton Lewis
University of Colorado at Boulder

US
clayton.lewis@colorado.edu

Colin Clark
OCAD University

Canada
cclark@ocadu.ca

Abstract
We introduce a new principle, the open authorial princi-
ple, that characterises desirable properties of languages sup-
porting networks of authors. We survey the growth in gen-
erosity of authorial systems, in a progression starting with
traditional object-orientation, continuing through aspect-
oriented, subject-oriented, context-oriented and dependency
injection systems, and concluding with the most recent gen-
eration of highly dynamic systems such as Korz andNewspeak.
We follow the implications of our principle for the external-
isation of application designs, resulting from the need to
promote the representation of differences between programs
as valid programs themselves. This raises conceptual and
practical parallels with technologies and idioms support-
ing the web, such as REST, realised document structures
supported by the DOM, and the negotiated space of CSS
selectors. These parallels lead to a quite different organisa-
tion for the language and runtime of an openly authorable
system, which emphasises a publicly addressable cellular
structure and a largely static dispatch.

CCS Concepts • Software and its engineering → Soft-
ware usability; Software design tradeoffs; Open source model;

Keywords context awareness, open authorial principle, reuse,
integration domain
ACM Reference Format:
Antranig Basman, Clayton Lewis, and Colin Clark. 2018. The Open
Authorial Principle: Supporting Networks of Authors in Creating
Externalisable Designs. In Proceedings of the 2018 ACM SIGPLAN
International Symposium on New Ideas, New Paradigms, and Re-
flections on Programming and Software (Onward! ’18), November
7–8, 2018, Boston, MA, USA. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3276954.3276963

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
Onward! ’18, November 7–8, 2018, Boston, MA, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6031-9/18/11. . . $15.00
https://doi.org/10.1145/3276954.3276963

0 The Open Authorial Principle
The design should allow the effect of any expression by one
author to be replaced by an additional expression by a further
author.
We propose that supporting this principle is so impor-

tant that we should uproot many of our ideas about how
good software is built, along with most of our common tools,
technologies and means of technical expression. This paper
identifies a historical axis of development towards increas-
ingly generous modes of reuse, but argues that much more
radical progress is possible and indeed desirable. We imag-
ine uprooting information hiding, function composition and
scopes, the program stack, compilers and programming lan-
guages in general. Progress towards this revolution will be
necessarily incremental and involve many losses along the
way — in this paper we describe a few steps we have taken
and sketch out a wider trajectory over terrain whose struc-
ture we only expect to become clearer once we approach
it.

Our justification for the principle will be a mixture of so-
cial, economic and technical concerns which cannot always
be cleanly disentangled. Primarily we will argue on the basis
of the role we desire software to have in society, rather than
from the usual technological or mathematical considerations
of correctness, consistency or efficiency. Along the way we
will note some of the philosophical, economic and organisa-
tional background that has led to the kinds of software that
we currently have, and why we consider these justifications
inapplicable.
We will revisit the principle from various points of view

throughout the paper, and progressively unpack some of its
implications. We begin by considering an activity which the
principle facilitates, reuse.

1 Introduction
Reuse is the capacity of a design to empower others to con-
tinue the design process via extension or adaption. We will
look at reuse by following the histories of design artefacts
as they pass between the hands of authors whom we see as
comprising networks. These histories form what we will call
“authorial stories” involving authors conventionally labelled
A, B, C , etc. in which collection an “end user” E is incorpo-
rated. The design artefact is composed of what we call the
expressions of the authors, by which we mean whatever they

https://doi.org/10.1145/3276954.3276963
https://doi.org/10.1145/3276954.3276963

Onward! ’18, November 7–8, 2018, Boston, MA, USA Antranig Basman, Clayton Lewis, and Colin Clark

write or whatever gestures they make to convey their design
intentions. The resulting design has an effect, by which we
mean the design as experienced by someone in the role of
use (e.g. E). Authors who exchange design artefacts are rep-
resented as connected by arcs in the network. One example
of such a connection is whereby A writes source text that
is processed by a compiler lying along the arc, resulting in
an executable used by B. Another is if A writes a base class
which is imported by B in order to produce a derived class
by the addition of source text.

Some developments in programming idioms have increas-
ingly supported reuse as supported by our principle, by sup-
porting reuse in richer networks of authors working on
artefacts with more complex structuring. In this paper, we
will survey a series of increasingly generous idioms which
we will categorise into a 4-level hierarchy1 according to the
sophistication of the reuse stories that they support, starting
with object-orientation at the base level 1, and ending with
reuse requirements at level 4 which lie a little beyond what
current systems can comfortably support.

1.1 Horizons in the Network of Authors
We consider that all existing programming idioms create
unwelcome distinctions among a population of authors, and
so create horizons beyond which the graph of authors cannot
grow. Some authors can restructure the work of an origi-
nating author to enable the modifications they want. But
other authors won’t have this privilege. Even if they might
in principle earn the right to make such modifications, as
in an open source project, in practice they may lack the re-
sources to do so. Thus the graph of authors fails to be open if
a language system can’t economically address each level of
these reuse scenarios — that is, to deliver the affordances of
reuse at a cost justified by the benefit to the interested com-
munity. We’ll consider that a system de facto fails to deliver
these affordances economically if it incurs costs amongst the
authors that grow much faster than linearly with respect to
their number and the size of design they’re collaborating
on. We discuss the scaling economics of development and of
communication amongst authors in section 5.6.

As we progress through increasingly sophisticated levels
of reuse, wewill observe that the horizon bounding the graph
of authors is steadily pushed back. At level 2 we will meet
developments such as Aspect-Oriented Programming [27]
and Dependency Injection [18], and at level 3 more modern
and ambitious systems such as Newspeak [10] and Korz [38].
We will situate this hierarchy of levels, showing the way to
level 4 and beyond, under our open authorial principle stated
in section 0, which we will elaborate in section 5.

1Note that levels 3 and 4 are not strictly nested, but in practice addressing
level 4 scenarios seems to entail dealing with those at level 3.

1.2 An Algebra of Program Differences
The Open Authorial Principle implies an unusual character-
istic for the language system we are interested in, which
is usually reserved only for artefacts as processed by the
tooling systems that work on them, such as version control
systems. The difference between two valid programs is typi-
cally named a diff or a patch in such systems, and is hardly
ever a valid program in its own right. What we seek is a
language or dialect in which representatives of such differ-
ences can be fairly compactly and validly encoded within
the language itself.
This goal gives rise to what we will call an algebra of

program differences. In section 5.3 wewill informally consider
a program addition operator ⊕ combining members of the
algebra. This operator lies outside the space traditionally
considered part of a programming language design.

1.3 Reuse Levels
The following sections will tour our hierarchy of reuse levels,
an overview and illustrations of which appear in table 1. In
this presentation of reuse levels, we will sometimes use the
term “component” to refer to the design artefacts/elements
referenced by the authors’ expressions. This view of reuse is
from the traditional perspective of a developer with direct
access to its design elements — traditionally its source text.
We will call this form of reuse “internal reuse”. Following
a wider presentation of the principle in section 5, we will
then turn to the implications of our principle for users and
developers who lie outside the bounds of the running system,
and who do not have access to modify its design elements.
We will call reuse for these authors “external reuse” — all
of the considerations of internal use and this hierarchy of
levels are in scope, in addition to further considerations of
externalisability and system architecture.

2 Meyerian Reuse - Level 1
Meyer’s open/closed principle [35] states that

A module should be available for extension (open)
but also available for use (closed),

where, for Meyer, “available for use” meant that a module’s
content should not be modifiable by its consumers, promot-
ing uses such as caching, verification, etc.. Meyer’s principle
codifies what is now accepted as one of the core principles of
object-orientation. Meyer’s principle allows for what could
be described as “first-order reuse”. One author can use the
definition of an component to derive an elaborated defini-
tion without requiring the original author to modify their
definition. This provides only for reuse of single implemen-
tation elements at a time (classes/objects), and does little to
facilitate reuse across a design or of larger aggregations.

The Open Authorial Principle Onward! ’18, November 7–8, 2018, Boston, MA, USA

1 // Author A, artefact alpha
2 class LocalFlowManager extends FlowManager {
3 keyIn() {
4
5 }
6 }
7
8 // Author B, artefact alpha'
9 class UntrustedFlowManager extends LocalFlowManager {
10 keyIn() {
11
12 }
13 }
14
15 // Author E consumes alpha or alpha'
16 var FlowManagerTester = function(underTest) {
17 ...
18 }
19 // Author F executes test
20 FlowManagerTester(new LocalFlowManager());

Listing 1. A basic exercise of reuse in ECMAScript 6

2.1 Toy Example — a flowManager
We will here begin a running example of reuse that we will
follow through levels 1, 2 and 4 of our reuse hierarchy (level
3 will be treated with separate examples in sections 4.1 and
4.2). We will consider reuse stories centering around a base
artefact called a “flowManager”, a toy example simplified
from our implementation of the GPII’s auto-personalisation
system2.

In the abstract, it is a “class” flowManager holding amethod,
keyIn which accepts some credentials from the user, and
brings the system to the appropriate state. We’ll ignore all
the arguments and effects of this method and almost all other
details since we are concentrating on the schematics of reuse.
In Meyer’s presentation3, there are implicitly authors A,

B, and (at least one) end user E. Let’s consider that A has
written a flowManager capable of running on a local device,
and B has provided a refinement of it known as an “untrusted
flowManager” which provides the same service for the user,
but does so by following a more stringent security policy.
Listing 1 shows this situation encoded in a familiar Meyerian
system, ECMAScript 6 classes. In this case our end user E
is a tester wishing to verify functions of the flowManager.
In the last line of each sample, we split E’s role further to
assign to a further author, F , the task of actually executing
the test function, anticipating future discussion.
From the point of view of E, an untrusted flowManager

is a substitutable replacement for a local flowManager. This
substitutability may or may not be encoded in some form

2The Global Public Inclusive Infrastructure (GPII - [39]) is an ambitious
project whose aim is to implement an auto-personalisation system provid-
ing operating system and application-level adaptation to users across all
applications and platforms. The GPII’s flowManager [24] assembles the
user’s preferences, the capabilities of a local device and relevant privacy
policies, and orchestrates the device’s capabilities to bring it to an inferred
condition meeting the preferences.
3We use Meyer as a standin for the much wider community sharing the
same reuse model, such as the Smalltalk/Self communities tracing lineage
to Kay and the mainstream Java/C++/C# communities, etc.

of base class or interface here named a simple “flow man-
ager” (FlowManager) and deliberately left out of scope. A
vast literature on the nature of this substitutability and how
it may be encoded in program text stems from [33], and a
different approach to this issue has resulted in Martin [34]’s
re-presentation of Meyer’s principle, but this is a detail that is
uninteresting to us here. Any of the reasonable choices of ap-
proach available in this area may be made without impacting
the current discussion.

For the purposes of an abstract presentation, we will give
symbolic labels to the design elements which so far have been
concrete. A’s original component, the local flowManager, is
α , B’s refinement to the untrusted flowManager α ′. This sit-
uation is illustrated in row 1 of table 1. Any base contract on
substitutability which the language permits (FlowManager)
is named for this discussion ℵ (aleph), which may also act
as a base implementation artefact.

Note that Meyerian inheritance can already land us with
reuse problems even in this simple situation. Even if α ′ is
indeed an effective substitute for E’s use of α (whether or not
this substitutability can be encoded successfully in ℵ), the
substitutability can only be enacted if E’s only use is to accept
an α rather than needing to construct one. If E’s code creates
an α , it can’t instead create an α ′ without being modified.
Author F , the one who actually executes the test function,
suffers from exactly this problem, since it is theywhomust be
responsible for constructing the object under test and hence
designating its type. Typical solutions in object-oriented
frameworks to this problem of constructional dependency
involve a variety of “factory pattern” [20]. We will return to
these when we start to treat more profound incarnations of
reuse problems in the following section 3.2. In a more open
system, we would hope to shift the burden of adaptation
either from F to E or indeed any further author in the system.

3 A Basic Reuse Scenario - Level 2
In this section, we’ll explore the most basic elaboration of the
Meyerian (level 1) reuse scenario that exposes the limitations
of object-orientation and other contemporary idioms. Let us
say that Author A’s local flowManager has a subcomponent
that we name a “preference data source”. This represents
some form of access to persistence where the user’s prefer-
ences are stored. Whilst different implementations of this
data source may conform to the same ostensible contract in
terms of data provision, they will differ amongst themselves
with respect to some kind of cross-cutting concern, for exam-
ple whether the preferences are stored locally or remotely,
or whether the preferences have been filtered with respect to
the user’s privacy policy. Let’s say that authorA’s implemen-
tation is a “local data source” gpii.dataSource.local , and
that author B’s refinement is of this to an “untrusted data

Onward! ’18, November 7–8, 2018, Boston, MA, USA Antranig Basman, Clayton Lewis, and Colin Clark

Table 1. Table of levels of increasingly sophisticated reuse with illustrations

Level Example Scenario Systems
Treating Section Diagram of Example Scenario

Level 1 A single artefact α created by A is
extended to α ′ by B

Object
Orientation Section 2

Level 2
A’s α with a nested artefact β has β
extended to β ′ by B, creating an
overall α ′

Parameterised
Types, DI,
AOP

Section 3

Level 3
B extends A’s α to a collection of
αn , C wants to extend all of αn by
αC without work proportional to n

Beta,
Newspeak
and AOP
(wide
hierarchy),
Korz (all)

Section 4.1,
Section 4.2

Level 4

A has created an extended
containment hierarchy, containing
some scattered γ at a deeply nested
level. B, C etc. want to extend the
entire hierarchy adjusting only
some γ to γ ′, without work
proportional to the size of the
hierarchy

. . . Section 4.3

source” gpii.dataSource.untrusted4. Listing 2 shows the
rendering of this situation as ECMAScript classes. In this
listing, author B has incurred further costs since in addition
to implementing the untrusted data source, they have also
needed to create a variant flow manager to contain it. This
is the beginning of the increased design scaling costs we
alluded to in section 1.1, which become more severe with
increasing reuse level for languages that are not adapted to
them. Corresponding to the abstract presentation in row 2
of table 1, the local flow manager is α , the local data source
is β , the untrusted data source is β ′ and the adapted flow
manager is α ′.

3.1 Mitigating Scaling Costs
We have been a little unfair to Meyerian inheritance here,
since by an adjustment to the design we could to a fair extent
mitigate the scaling costs. By shifting responsibility for the
value of preferencesDataSource into the LocalFlowManager’s

4In this case “untrusted” via metonymy signifies “a data source suitable to
act in a case where the user does not trust the security of the local device”

1 // Author A, artefact alpha
2 class LocalFlowManager extends FlowManager {
3 constructor: {
4 this.preferencesDataSource = new LocalDataSource();
5 }
6 }
7
8 // Author B, artefact beta'
9 class UntrustedDataSource;
10
11 // Author B now must also write artefact alpha'
12 class UntrustedFlowManager extends LocalFlowManager {
13 constructor: {
14 this.preferencesDataSource = new UntrustedDataSource();
15 }
16 }
17
18 // Author E consumes alpha or alpha'
19 var FlowManagerTester = function(underTest) {
20 ...
21 }
22 // Author F executes test - must also select alpha or alpha'
23 FlowManagerTester(new UntrustedFlowManager());

Listing 2. Economic failure of level 2 reuse in ECMAScript 6

constructor arguments, we could arrange to retain its imple-
mentation. This however involves us in two issues:

The Open Authorial Principle Onward! ’18, November 7–8, 2018, Boston, MA, USA

The need for foresight The LocalFlowManager im-
plementor may simply not have considered that pa-
rameterisation of this aspect of their implementation
would be useful or permissible to their users. Without
the foresight of explicitly cascading this DataSource
dependency, the improved design scaling is not avail-
able to downstream authors.
Scaling of constructors As components scale up to
be the head of an increasingly large tree of nested de-
pendencies, the number of arguments to be recursively
surfaced in each constructor grows exponentially with
the depth of the tree. This represents a design scaling
cost in its own right.

3.2 Factories, Dependency Injection and Newspeak
There are numerous solutions in the literature to this rela-
tively mundane reuse situation. Some apply a “factory pat-
tern” — instead of supplying ready-built objects as construc-
tor arguments, we instead supply functions which dispense
them, which may themselves be polymorphic methods on
substitutable objects. This leads to further scaling issues
since we have a fresh class of entity — factories — to design
in the system, in practice with its own type hierarchy to
be maintained in parallel with the base artefacts — as well
as a wholly unmanageable “regress” problem of how the
same reuse problem with respect to the factories is to be re-
solved. Bracha [9] has commented on this form of pathology
of “design regress”, observing that it results when a “shadow
world” is created as a result of resolving a problem with
design artefacts that don’t have a first-class design status.
Other responses to this problem require a fresh language
feature, orthogonal to the classically object-oriented ones, al-
lowing the expression of “parameterized” or “generic” types
— we’ll return to this possibility in section 3.3. This category
of reuse problem also gave rise to a large family of frame-
works and techniques based on “dependency injection” (DI)
paradigmatically described in [18].
An solution to this “foresight” problem is comprised in

solutions such as Bracha [10]’s Newspeak, in which every
type name is parameterised — at every point of consum-
ing a type name, a user has the facility to rebind it to one
resolvable in their context. Indeed, Bracha [10] explicitly
states that Newspeak “eliminates the primary motivation for
dependency injection frameworks”. As a result, Newspeak
resolves not only reuse problems at this level but also at level
3 and gives partial solutions to level 4 problems as we will
see in section 4.3.

3.3 Containment through Inheritance
What if A had already been applying Meyerian reuse and
the containment-like relation between α and β was already
inheritance itself? With a simple use of implementation in-
heritance without overriding, we might say that α “IS-A”
β through including β ’s entire definition into its own. B’s

reuse requirement is now expressed as wanting an α ′ which
is α with its base class β replaced by β ′. Unfortunately, this
is an impossible form of reuse via the inheritance relation
designed into traditional OO languages — whilst one can
override elements of one’s base class, one cannot override
its actual specification. This forces the requirement for pa-
rameterised types to be added to the system. Parameterised
types allow a definition to be generalised over all values of a
type which appears in it.

3.3.1 Reuse through Parameterised Types
In C++, author A, perhaps trying to address the reuse situa-
tion of section 3.3, would have had to have already written

template <class T> class alpha: public T {}

so that they themselves could then write
alpha<beta> myBeta;

and that author B could write
alpha<beta1> myBeta1;

Creating a template like this requires foresight from A:
they need to anticipate that someone in their community
may wish to modify β . It also adds complexity, as type signa-
tures become longer and more involved. The name of an α
cannot be mentioned without also bringing the requirement
to mention the particular T it involves. The requirement for
this pattern of reuse was encountered very early in the life-
time of the C++ language and became characterised as the
“curiously recurring template pattern”[13].

Parameterised types are a sufficiently powerful reusemech-
anism that they also resolve the aggregation variant of this
problem in section 3.2 — it’s just as easy for a parameterised
type to appear as the type of a member as the type of a base
class.

3.3.2 Containment Through Private Use
The point within α where β is used may also lie within arbi-
trary implementation code, rather than a member initialiser
appearing in a constructor, and hence the β instance does not
appear within the class definition. This situation is yet worse
than the one before, since we not only have to refactor α but
also rewrite it to include some point where parameterisation
by T may be expressed. This form of “private reuse” occurs,
for example, whenever two functions are composed using
traditional programming language mechanisms, leading to
our proposal in the opening paragraph that we would like
to see function composition supplanted by composition in
pipelines whose sequence points are given publicly address-
able names. Basman [4] follows through this argument in
more detail, which is taken up again in section 7.3.

3.4 Aspect-Oriented Programming
Aspect-oriented programming [27] is a solution to level 2
reuse problems which has appeared in some object-oriented

Onward! ’18, November 7–8, 2018, Boston, MA, USA Antranig Basman, Clayton Lewis, and Colin Clark

languages — most notably as a decoration to mainstream
OO languages such as Java and C++. With AOP, author B is
allowed to create a symbolic expression known as a pointcut
to name the point in A’s design where β is referred to. A
further expression known as advice encodes the modification
of the design where β is substituted by β ′.

Whilst AOP provides a clear native solution to the level 2
reuse problems presented earlier in this section, it fails with
the more demanding level 3 and 4 scenarios we will present
in the following section — we return to AOP and other more
modern approaches to reuse in section 4.4.

4 More Demanding Reuse Scenarios -
Levels 3 and 4

The simple scenario in the previous section, solved by AOP,
DI and similar formalisms, only represents level 2 reuse.
In practice, much more demanding scenarios arise quite
regularly. For example

• Level 3 reuse scenarios involve several authors, B, C ,
etc. who have written modifications to modify the
same part (e.g. α) of A’s work. This is not the situation
addressed through “multiple inheritance” or “mixins‘
provided in some flavours of OO since we require A’s
original expression to be consumed unmodified by E,
without any further authors who simultaneously want
to put B’s, C’s expressions in scope needing access to
a construction point of α or suffering a scaling burden
through having to refer to each other’s expressions.

• Level 4 reuse scenarios involve the location of the ele-
ments to be adapted, γ s, within A’s work. If γ occurs
inside many layers of structure, introducing a template
or other parameterisation point to support the modi-
fication will require a good deal of rework. Worse, if
there are severalγ s inA’s work, but only some of these
should be changed, there may be no suitable point at
which one can introduce a template. Such a scenario
is illustrated in row 4 of table 1, and exampled in sec-
tion 4.3. New facilities are needed to respond to these
situations.

4.1 Level 3 Reuse Variant - Class Hierarchy
Inheritance

Note that level 3 reuse scenarios may be demanding on ac-
count of two orthogonal kinds of forces. The first kind of
force stresses designs where B has extended A’s design into
a deep hierarchy, and C wishes to advise all of it. Bracha
[10] names this variety of level 3 reuse as the “class hierar-
chy inheritance” problem. In the formulation there, author
A has created a base class Shape, author B a ShapeLibrary
deriving Rectangle, Circle, etc. and author C has created
a hierarchy of colorable things, and wishes to make all the
contents of B’s library of shapes available to E as coloured
shapes without having to do work proportional to the size of

1 class ShapeLibrary usingPlatform: platform = (
2 | ”We use = to define immutable slots”.
3 private List = platform collections List.
4 private Error = platform exceptions Error.
5 private Point = platform graphics Point.
6 |
7)
8 (
9 public class Shape = (...)(...)
10 public class Circle = Shape (...)(...)
11 public class Rectangle = Shape (...)(...)
12)
13
14 class ExtendShapes withShapes: shapes = (
15 | ShapeLibrary = shapes. |
16)(
17 public class ColorShapeLibrary usingPlatform: platform =
18 ShapeLibrary usingPlatform: platform (
19)(
20 public class Shape = super Shape (| color |)(...)
21)
22)

Listing 3.
Class hierarchy inheritance sample in Newspeak, extracted from [9]

the library. This situation is illustrated in row 3 of table 1, and
in listing 3 we reproduce the original Newspeak language
version as seen in [9], showing that this reuse scenario is
compactly and idiomatically resolved.

4.2 Level 3 Reuse Variant - Independent Context
Dimensions

Continuing from section 4.1, level 3 reuse scenarios may
be demanding on account of a second kind of force, which
stresses designs where there is a large number of authors, B,
C , D etc. all competing to extend the same artefact. Ungar
[38] names this variety of level 3 use as requiring “symmetric
dimensions of context”. Here we present an example from
[38] which demonstrates how fresh adaptations can be con-
tributed to a target implementation, without either a change
in its implementation or a change in the type name con-
sumed by its users. This represents a modern, high level of
adaptability, which is also present in such environments as
Newspeak [10].
The example application in [38] represents a rendered

image with an operation named drawPixel, accepting three
arguments, x and y coordinates and a colour pixel to be
plotted at those coordinates’ position. The user on whose
behalf the image is to be rendered is considered to have some
“context” accompanying them. The image rendering process
should be modified by this context, in order to respond to
the needs which the context implies. The examples provided
in [38] of such contextual requirements include:

• A “colour blind” user on whose behalf the image will
be rendered in grayscale rather than in colour (B)

• An “Australian” user on whose behalf the image will
be rendered upside down (D)

• A user from Antarctica on whose behalf the image
should be rendered at double size as well as upside
down (E)

The Open Authorial Principle Onward! ’18, November 7–8, 2018, Boston, MA, USA

As an factorisation artefact, we label the expressions of an
intermediate authorC as mediating the expressions of D and
E by creating a common context representing the “Southern
Hemisphere”, southernHemi.

This example was crafted to exhibit that these contexts rep-
resent more or less “orthogonal” dimensions of adaptability
for the target application, and that they are contributable to
the target without interfering either with its implementation
or unduly with each other. As examples of interactions [38]
consider a user who is both colour blind and an Australian,
who should receive an image which is both grayscale and
upside down, and also generalises the image inversion condi-
tion for Antarcticans and Australians to derive from the fact
that they both belong to the “Southern Hemisphere”. This
structure of contextual adaptations, with multiple sources of
context all competing to advise the same target implemen-
tation which must remain “closed” in the Meyerian sense
marks out this example as an instance of level 3 reuse in our
taxonomy of section 4.
In listing 4 we reproduce the original Korz language ver-

sion as seen in [38]. In this listing we see that the expressions
from different authors are somewhat functionally separate
and do not intrude on the base artefacts (newCoord, screen).
For example, the expressions of author B, “colour blind” ap-
pear on lines 29-33, those of author D, “Australian” on line
25, and those of author E, “Antarctica” on lines 26 and 49-52.
Note that the expressions of authors C and B have become
correlated together into the joint definition on line 40-47
expressing how to draw pixels on behalf of users who are
both colour-blind and in the Southern Hemisphere, which
morally would have to be the work of a higher-level integra-
tor F who has to have become aware of the work of both C
and B and synthesizes them in this way. In theory this inter-
mediate definition might be unnecessary in a more powerful
authorial system that could observe that the effects of these
two adaptations commute and could factorise the dispatch
drawPixel into two separate operations.

4.3 A Level 4 Reuse Scenario
We conclude our series of reuse examples from sections
2.1 and 3 with a more complex example of level 4 reuse.
In this author network, author A (originally B in section
2.1) implemented an “untrusted flowManager” which was
simply hosted on the user’s machine. Author B extended A’s
design to incorporate a remote “cloudBased flowManager”
to factor off just those functions which were relevant within
the cloud. Author C then wished to write an integration
test which verified the compatibility of A and B’s work by
aggregated them back into a single local design. C needs
to direct overriding configuration at a nested part of B’s
design, whilst leaving A’s untouched. We should stress that
this still represents an architecture only at modest rather
than extreme scale, currently comprising thousands rather
than millions of lines of code. Therefore we feel justified in

1 def {} pointParent = newCoord;
2 def {} point = newCoord extending pointParent;
3
4 var {rcvr ≤ point} x;
5 var {rcvr ≤ point} y;
6 var {rcvr ≤ point} color;
7
8 method {
9 rcvr ≤ pointParent,
10 device //dimension required but can be anything
11 }
12 display {
13 device.drawPixel(x, y, color)
14 };
15
16 def {} screenParent = newCoord;
17 def {} screen = newCoord extending screenParent;
18 method {rcvr ≤ screenParent} drawPixel(x, y, color) {
19 // draw the pixel in the color
20 }
21
22 def {} locationParent = newCoord;
23 def {} location = newCoord extending locationParent;
24 def {} southernHemi = newCoord extending location;
25 def {} australia = newCoord extending southernHemi;
26 def {} antarctica = newCoord extending southernHemi;
27
28
29 method { rcvr ≤ screenParent, isColorblind ≤ true }
30 drawPixel(x, y, c) {
31 {isColorblind: false}
32 .drawPixel(x, y, c.mapToGrayScale)
33 }
34
35 method { rcvr ≤ screenParent, location ≤ southernHemi }
36 drawPixel(x, y, c) {
37 { -location }.drawPixel(x, -y, c)
38 }
39
40 method {
41 rcvr ≤ screenParent,
42 isColorblind ≤ true,
43 location ≤ southernHemi
44 }
45 drawPixel(x, y, c) {
46 {-isColorblind}.drawPixel(x, y, c.mapToGrayScale);
47 }
48
49 method { rcvr ≤ screenParent, location ≤ antarctica }
50 drawPixel(x, y, c) {
51 {-location}.drawPixel(2 * x, -2 * y, c);
52 }

Listing 4.
Multidimensional adaptation sample in Korz, extracted from [38]

positioning even level 4 reuse as a standard, everyday level of
reusability that every competent architecture should aspire
to.
In listing 5 we see a rendering of this relationship in

Newspeak, a modern language offering a powerful reuse
mechanism first seen in Beta, named “virtual classes”. The
definitions for authorC have become deeply nested, in order
to address the structure of the deeply nested artefacts inher-
ited from A and B. This doesn’t represent economic reuse
since the depth of this nesting will increase with the size
of the pool of authors and their activities. In this case, the
growth is nominally n log(n) in the size of the expressions,
which is broadly acceptable, but we should note extra er-
gonomic and design costs incurred through writing deeply
nested artefacts, including constructor scaling of the kind
we warned against in section 3.1.

Onward! ’18, November 7–8, 2018, Boston, MA, USA Antranig Basman, Clayton Lewis, and Colin Clark

1 class LocalDataSource = () ()
2 class UntrustedDataSource = () ()
3 class FlowManager usingLocalDataSource: LocalDataSource = (
4 | public preferencesDataSource = LocalDataSource new. |
5)
6 class LocalFlowManager = FlowManager () ()
7 class UntrustedFlowManager
8 usingUntrustedDataSource: UntrustedDataSource = LocalFlowManager (
9 | public preferencesDataSource = UntrustedDataSource new. |
10)
11 class CloudBasedFlowManager = FlowManager () ()
12 class CloudBasedConfig usingCloudBasedFlowManager: CloudBasedFlowManager = (
13 | public flowManager = CloudBasedFlowManager new. |
14) ()
15 class LocalConfig usingLocalFlowManager: LocalFlowManager = (
16 | public flowManager = LocalFlowManager new. |
17) ()
18
19 "C's expression:"
20 class MultiConfig
21 usingLocalConfig: LocalConfig
22 usingCloudBasedConfig: CloudBasedConfig
23 usingCloudBasedFlowManager: CloudBasedFlowManager
24 usingLocalDataSource: LocalDataSource = (
25 |
26 public localConfig = LocalConfig new.
27 public cloudBasedConfig = CloudBasedConfig new.
28 |
29) (
30 public class CloudBasedConfig = super CloudBasedConfig (
31 | public flowManager = CloudBasedFlowManager new. |
32) (
33 public class CloudBasedFlowManager = super CloudBasedFlowManager (
34 | public preferencesDataSource =
35 LocalDataSource new url:'http://localhost:8088/preferences/%userToken'.
36 |
37) ()
38)
39)

Listing 5. FlowManager expression showing level 4 reuse requirement

We can interpret this situation as representing a form of
violation of the “Law of Demeter” (LoD) in which authors
should not depend on direct structural knowledge of the
layout of objects designed by others. This law was originally
stated in the context of classic OOP and governed classical
entities such as objects and methods, but we can interpret
its intent in terms of more exotic quantities such as author
C’s virtual classes. In the formulation of Lieberherr [31], a
method should only depend on “the immediate parts of self”.
The authors state that such a law produces code which is
“robust with respect to changes in the hierarchy structure”, a
goal with which we agree. We note here that if the author
of CloudBasedConfig had followed standard recommenda-
tions on information hiding and made the definition of the
relevant internal classes private rather than public, this
reuse would not have been possible at all. We will return to
the LoD and this tension between information hiding and
reusability in section 6.3.
One might argue in this example that authors A and B

should have factored their definitions more appropriately,
arranging to surface the piece of configuration which would
eventually need to make its way to C at each stage of reuse.
However, as in section 3.3, we are emphasising the fact that,
under the OAP, effective reuse should not necessarily de-
pend on such design anticipation and that we should be able
to make some kind of economic use of previous authors’
expressions purely through additionality.

4.4 AOP, COP and Dispatch
In this section we return to AOP as providing successful level
2 reuse, and consider the difficulties it runs into at higher
levels, and how more modern techniques such as Context-
Oriented Programming (COP) improve on it.
A key limitation of AOP in level 3 scenarios is that the

dialect encoding pointcuts is only capable of making use of
local, static design information, and furthermore that the
results of advice can only take the form of method compo-
sition. This makes examples such as Newspeak’s in section
4.1 hard to express since the result is an elaborated class
definition, and examples such as Korz’s in section 4.2 are
hard to express because the change in dispatch depends on
contextual information in a multidimensional way, and the
result is wholesale replacement of methods, together with
the ability to retain access to definitions from coarser con-
texts. COP substantially lifts the first restriction — decisions
for adaptation can depend on distant contextual information,
and in presentations such as [32] can also depend on struc-
tural runtime information. Some recent variants of COP such
as [36] substantially lift the second restriction — adaptations
can take the form of parameterisations of the class hierarchy,
via support for the virtual class idiom we saw in Beta and
Newspeak.
However, in all of these approaches we see a significant

reliance on complex idioms for dispatch. Examination of the
system descriptions in [37], [32], [10], etc. shows complex
resolution algorithms which select amongst multiple avail-
able implementations of a method using both lexical and
dynamic information, and in the COP tradition, are also ca-
pable of weaving multiple such into a single, fused execution.
In section 7 we will argue that this opposes important goals
of the OAP by producing implementations which are hard
to distribute into other environments.

4.5 The Value of Internal Reuse
To recap our initial presentation of levels from section 1.3,
we have named the variety of reuse that we have so far
analysed as “internal reuse”, since it is exercised from within
the bounds of the system by insiders who are empowered to
add to its design expressions — its source text. A language
feature, “virtual classes”, which strongly empowers internal
reuse, has been available in the Beta language since 1983, but
in 35 years has not been incorporated into any languages
with wide adoption. One explanation for this might be that
developers find the “Law of Demeter” violations which this
feature encourages unpalatable. Another explanation might
be that developers are in truth uninterested in achieving
reuse, since the economic costs incurred during the failure
of internal reuse are not passed on to them. We find support
for this explanation in statements such as that of Alan Perlis
in Abelson [1]:

The Open Authorial Principle Onward! ’18, November 7–8, 2018, Boston, MA, USA

Is it possible that software is not like anything
else, that it is meant to be discarded: that the
whole point is to see it as a soap bubble?

If we take such an argument seriously, we would then ex-
pect that a language system which had no other beneficial
properties than well-resolving level 4 reuse problems would
also receive no uptake. In fact this is just what we believe,
and therefore from section 6 onwards we explore further
consequences of the OAP which promise to externalise the
costs of reuse failure, and empower those communities who
incur the costs to mitigate them.

4.6 Query-based Extension
Our preferred means of resolving level 4 reuse problems
such as those seen in section 4.3 appeals to what could be
called “query-based extension”. We would prefer that author
C was able to issue a query structured as a selector, which
would specify in logical terms the address of the nested
definition they wished to adapt, without having to precisely
anticipate each layer of containment along the way to it.
In this way, the “algebra of differences” would enable C to
compactly encode differences between program designs in a
moderately stable way. Providing this capability, however,
has cascading implications for many aspects of system and
language design that we will begin to elaborate in section 6.
Firstly, however, we return to our principle in the light

of these examples and consider some more direct aspects
of its interpretation and implications for the economics of
development.

5 The Open Authorial Principle
In this section we expand on our original statement of the
principle in section 0 by recognising it as a generalisation
of Meyer’s open/closed principle, and making a restatement
of the principle by considering its implication for author
expressions forming an algebra of program differences.

5.1 Reappraising Meyer’s Principle
Meyer’s open/closed principle is a good foundation for ours.
We believe in its primitives and ends — especially in the pos-
sibility that an expression may be “closed” in the sense that
it may be “closed over” by further authors as a result of being
constant except in the face of genuine revisions to the overall
program. This allows a form of “referential transparency” in
design — the name of an component can be safely substi-
tuted for its referent, allowing for the possibility of caching,
memoisation, etc. and similar desirable affordances. We see
two fundamental limitations within Meyer’s principle:

The need to account for composite structure
in the reused artefacts

Meyer’s formulation only refers to a single artefact at
a time as being open or closed. As we discussed above

in section 3, reuse scenarios can involve changes to
multiple elements in a wider aggregate.

The need to account for repeated reuse Meyer’s formula-
tion only considers a single point of authorial control
expressing reuse. In practice, creative networks spread
wider, and the action of reuse should not degrade the
potential for further reuse by more distant authors.
This leads to our reformulation of the nature of open-
ness.

5.2 Alternative Statement of the Principle
Our reuse scenarios, characterised from levels 1-4 in the
previous section, as well as a wider universe of uncharac-
terised scenarios, may be generalised by our Open Authorial
Principle, as stated in section 0:

The design should allow the effect of any expres-
sion by one author to be replaced by an additional
expression by a further author.

This principle can be looked at from a different point of
view in terms of the algebra of program differences men-
tioned in section 1.2. Many of our higher-level reuse scenar-
ios require resolution of multiple sources of changes com-
peting to modify the same site. The language of expressions,
therefore, should give rise to an algebra that is closed under
difference. That is, given any two programs, α and α1, that
are similar in intention and expression, there should be a
third program, δ1, such that combining α and δ1 produces
a program that is identical in behavior (and close in its ex-
pression) to α1. An example appears in section 4.1, where α
consists of a shape, δ1 consists of the addition of a colour,
and the resulting α1 represents a coloured shape. Should our
language fail to meet a reuse scenario, we create a closed
“horizon” in our graph of authors beyond which it cannot
grow. Therefore an alternative statement of the OAP, which
we’ll elaborate in the next section, is as follows:

The design should be drawn from a closed algebra
of expressions which will enable an open graph of
authors.

5.3 The Program Addition Operator ⊕
We might write mathematically, describing the scenario of
the previous section,

∀α,α1, ∃δ1 s.t. α ⊕ δ1 = α ′
1 ≃ α1 (1)

where ≃ represents two programs with the same behaviour,
and ⊕ represents the program addition operator which is
used by authors to combine programs together. Note that
⊕ is rarely defined as part of a language definition, since its
use more usually appears at the tooling level of a system. For
example, in a compiled language, ⊕ requires the addition of
command-line arguments to the compiler, specifying source
files to be compiled together, whereas in JavaScript written
for the web, ⊕ requires the specification of <script> tags

Onward! ’18, November 7–8, 2018, Boston, MA, USA Antranig Basman, Clayton Lewis, and Colin Clark

at the head of the page referencing JavaScript source files
to be fetched and interpreted. To be functionally open, the
system’s facility for addressing ⊕ must be available with
respect to the particular form in which a program is delivered
to an author in the network — not likely if it was delivered
in an executable binary form.

Gabriel [19] observes that an important schism has opened
up in the community between those working on “systems”
and “languages”. We observe that it will be impossible to
meet the highest levels of reuse in languages which main-
tain this separation between semantics (studied by language
theorists) and runtime behaviour (measured by the systems
community). The protrusion of the program addition opera-
tor ⊕ outside the space traditionally considered interesting
by language theorists is an important evidence of this.

5.4 Distinction to Previous Program Algebras
Our algebra should not be confused with a similarly-named
structure which has emergedmany times in the literature, for
example in Backus [2]’s “algebra of programs”. Rather than
imagining an algebra whose combining operation is merely
the symbolic combination of mathematical expressions rep-
resenting the program fragments, our combining operation
represents whatever combining operation is necessary in the
world of the actually executing program in which expressions
are combined. Furthermore, we are not so much interested
in the ability simply to build up complex programs from
simpler ones, which is a facility which emerges in practically
every programming language. Instead, we are more inter-
ested in the practical capability, presented with two already
written or planned programs, to decompose the difference
between them as a reasonably plausible program expression
in its own right. This is expressed by our defining property
in section 5.3 being expressed in a decompositional rather
than an additive form.

5.5 The Principle Cannot Be Provably or Fully
Satisfied

Conformance to the principle is not susceptible to perfect
verification, because it establishes properties observed by
real users in real communities — as explained in section 1.1,
the principle’s subject matter is the economics of authorship
rather than axiomatised theory. Not all differences among
programs need to, or can, correspond to valid programs.
Rather, the aim is that the majority of changes authors actu-
ally want to make should correspond to valid programs, and
that these programs can be found without undue effort.
Can useful properties lie outside the domain of axioma-

tised theory? Consider homoiconicity, the property of a pro-
gramming language in which the program structure is simi-
lar to its syntax. This is also a “soft” property: any language
could be said to have it to some extent, LISP strongly and C
very weakly. The notion is useful despite its not being crisp.
The property is also not unrelated to the one we seek — some

measure of homoiconicity is clearly essential in a system
capable of encoding program differences as programs.
Another important reason that the principle cannot be

fully satisfied is that increasing attempts to satisfy it in-
evitably entail losses in other design areas, which we will
discuss in the next section.

5.6 Economics of Development and
Communication

The OAP is stated in isolation as an apparently absolute
principle, but naturally it is just one element in a wider pic-
ture of design economics. In practice, increasing attempts
to satisfy the OAP will result in designs with weaker lo-
cality of reference, reduced comprehensibility of individual
design artefacts (in the absence of supporting tools), greater
verbosity, and greater consumption of runtime resources.
Linked goals of this paper are:

i) To argue that previously unvisited extremes of the
design tradeoffs implied by satisfying the OAP should
be explored by designing new language-like systems

ii) To exhibit what the design costs incurred by these
systems look like

iii) To suggest ways that these costs could be reduced
either through improved engineering of the supporting
system or improved tooling

An important scaling phenomenon that is directly implied
by the economics of the OAP is one described by Brooks [11],
that the costs of communication between a team of n authors
grows superlinearly with n — and therefore, one of the goals
of this paper, to bring the growth in costs for designs worked
bymultiple authors to close to linear might appear inherently
futile. However, we argue that Brooks’ analysis is inappli-
cable to the situations encountered by many communities
of authors today. Brooks’ analysis was situated within the
“military-industrial complex” model of organisation where
hierarchically organised groups are assembled in more or
less the same time and place in order to achieve a task which
results in clearly quantifiable economic benefits. The experi-
ence of the current authors with software development has
frequently violated these assumptions:

• Where one’s “collaborators” may not only be widely
dispersed but in many cases unavailable — they have
left an major open source project drifting and unmain-
tained, or are trying to achieve widely different objec-
tives than your own

• Where one is attempting to build a “product” whose
function can’t be easily characterised, and tends to
drift over time

• Where one can’t directly quantify the benefits of the
software since it is not the artefact which is the agency
of the value, and further, one may not easily draw a
boundary around its community of use

The Open Authorial Principle Onward! ’18, November 7–8, 2018, Boston, MA, USA

On these grounds, Brooks’ observation that the number
of communication links grows superlinearly between pro-
grammers in a “team” of size n becomes questionable since
in many cases the links are either unidirectional or else com-
pletely absent. One of the main aims of the OAP is to make
software development tractable in these “open graphs” of
authors where one must frequently inherit design artefacts
from others with little or no influence over or communica-
tion with their authors — and still worse, when this lack of
influence has been cascaded down a long chain of project
dependencies.

6 Addressability and Externalisability
Following our presentation of an algebra of program dif-
ferences in section 1.2, we now discuss two closely related
properties that we argue must emerge in the design of a suc-
cessful openly authorable (OA) system. These can be derived
from the contrast we draw in section 5.4 between our algebra
and similar such algebras that have been assembled in the
past. Rather than merely a formal algebra whose elements
may only be composed from a “God’s eye view” amongst
the elements themselves, we are concerned with an algebra
whose affordances are available in practice to the network
of authors, and in particular the user E we incorporated into
this collection in section 1. To start with, this implies that
we take on board all the goals of the Live Programming
movement, epitomised by Ungar [37]’s slogan “The thing on
the screen is supposed to be the actual thing”. However, the
nature of the algebra immediately implies a quite different
structure for our implementations than has led the Live Pro-
gramming community to implementations such as Smalltalk,
Self and Korz.
In order to operate this algebra in an economically effec-

tive manner, we must allow externalisable references from
outside an executing system to bind to instances of compo-
nents in a way which is relatively stable across the varia-
tions in design induced by the contribution of author expres-
sions. We aim to recast the work of programming in terms
of a natural coordinate system in which units of design have
meaningful, stable names which identify their location in a
fine-grained tree of cells within the design.

This aim leads to the following two properties of compo-
nents in an OA design:

Free Addressability - Every part of an OA component
can be referenced using a global path expression, en-
coding its path as descended from the global compo-
nent tree root.

Externalisability - OA artefacts and state can be exter-
nalised naturally and directly — aiding cooperation
with artefacts in other languages and processes

6.1 A New Cellular Model
The organisation of a Smalltalk application into insulated
units named “objects” was inspired by the subdivision of

biological entities into cells [26]. This is good engineering for
systems which must be self-assembling and self-managing,
but is a poor fit for systems which must place all of their
resources for adaptability at the disposal of the user, or a
wider network of authors. Our cellular units, rather than
serving to insulate parts of the implementation from one
another, serve the opposite goal of maximally advertising
the structure of the application via a transparent addressing
scheme. OA components have a further role in structuring an
application, as their lifecycle points are used to structure the
lifetimes of relationships and adaptations in the component
tree.

Our inspiration is taken from a very popular and success-
ful idiom for end-user programming — the Document Object
Model (DOM - [21]) mediating access to the rendered con-
tents of web pages. A crucial affordance which has emerged
from applications based on the DOM is the use of CSS selec-
tors to stably represent selections of the tree of DOM nodes.
The original use case for CSS selectors allowed designers
to target styling rules at parts of a web interface, which
rules could expect some stability of reference as the content
was designed. Over time, as web interfaces became more
dynamic, CSS selectors became a vital part of the implemen-
tation design as well, as mediated by popular frameworks
such as jQuery.

As a result of the DOM’s huge currency at the core of the
world’s web browsers, DOM implementations have become
extremely robust and performant platforms for shared au-
thorship of a space of user interface elements, inspiring such
implementations as Klokmose [30]’s Webstrates, a collabo-
rative authoring environment where the state of the DOM
itself corresponds to the authorial shared state.

Our cellular model, thus, imports two vital elements from
the idiom of DOM-based programming:

6.1.1 Transparent, Selector-based Addressing
A selection of tree nodes which is to be targeted with some
effect or predicate can be stably identified by means of a pat-
tern encoded into a string, with clauses representing interme-
diate match sites in the tree. These could be structured very
similarly to the CSS system. A further precedent for such
selectors binding to tree-structured elements is the regular-
expression-like SMARTS language for encoding predicates
on molecular graphs [15]. A bridging analogy considering
chemical reactions as a computational model appeared in
Berry [8]. It is these selectors which form the basis for the
“query-based adaptation” model that we propose for achiev-
ing level 4 reuse in section 4.3.

6.1.2 Lifecycle of Interactions Aligned with
Component Peers

The DOM is an environment where elements may unpre-
dictably come and go. It’s crucial for application integrity
that any effects associated with the existence of a node are

Onward! ’18, November 7–8, 2018, Boston, MA, USA Antranig Basman, Clayton Lewis, and Colin Clark

banished along with its demise. A typical behaviour to main-
tain integrity is to in some form “neuter” such a destroyed
element, so that it can no longer participate in making side ef-
fects visible to the user. In the DOM parlance, it is “detached
from the document”, and further operations with it remain
valid, but can no longer influence the browser’s rendering
process. A successful OA system needs to behave similarly,
and prevent any further dispatch from being serviced on a
component which has been destroyed. This is quite at odds
with a typical OO approach, in which there is not intended
to be any distinct lifecycle state in which an object reference
is visible to referrers and in which the object is not consid-
ered “live”. These lifecycle requirements go beyond those
of traditional garbage collection because of the situation
where a freshly destroyed node may imminently be targeted
by an upcoming effect, say an event notification which is
upcoming on the call stack. These requirements would be
weakened in a system which adopted a fully asynchronous
message-passing idiom as is seen, for example, in Erlang.
In a general-purpose OA system, rather than one which

simply represents a display document structure as the DOM,
there are yet more complex possibilities for multilateral re-
lationships amongst component nodes. For example, one
component may bind an event listener on behalf of another,
set up a dataflow relationship between itself and other com-
ponents, or broadcast adaptations into the tree at large. All of
these relationships must be cleanly torn downwhen the com-
ponent is destroyed. A realisation of this kind of multilateral
relationship in such a context appears in the Entanglements
of Basman [3].

6.2 Externalisability and REST
A systematic failure of object-oriented environments is their
tendency to be “hermetic”, that is, to give insufficient con-
sideration to what lies outside the system. The semantic is
defined in great detail of the behaviour of an implementation
within a particular “walled garden” (the language itself and
its virtual machine), and only limited thought is given to how
this implementation is expected to coexist in a busy mixture
of distributed elements written in a mixture of implementa-
tion technologies and idioms. The only common model for
application distribution in the OO community is the “proxy”
model, where a local agent (an “object”) is considered to be
a proxy for a remote one, fielding local messages, convert-
ing them into messages to the remote part of the system,
awaiting a response and then issuing that response locally
on behalf of the local client of the proxy. This is constitutive
of the “message passing” model of distribution on which
object orientation is founded.

This model is sometimes highly appropriate — especially
when the messages passed are small and relatively infre-
quent, and/or the network has high bandwidth, reliability
and low latency with respect to the application’s require-
ments. However, it is not appropriate for applications where

the throughput of such messages would be extremely high,
or the application is extremely widely distributed over a
collection of nodes joined by a network which is neither
hugely reliable nor capacious. Drawing up the protocol for
such messages also creates a great burden for tracking and
interpretation by the communicating systems, a problem
referred to by Lanier [25] as operating “simulations of vast
tangles of telegraph wires”.

As we identified in section 6.1, the web is a highly evolved
and successful emergent architecture devoted to solving the
problems of distributed application development, although it
is frequently not recognised as such by computer scientists.
The DOM idiom that we praise in section 6.1 is part of a
wider engineering idiom named REST by Fielding [17]. In
this idiom, the response to a remote endpoint is not merely
a message responding to an arbitrary query, but an exhaus-
tive summary of the state of a resource. The acronym REST
denotes representational state transfer, indicating that state is
moved from place to place, rather than merely the answers to
limited questions as with message passing. A successful OA
system, similarly, places state (and not message passing) at
its architectural core and facilitates architectures that work
with it. This implies that any messages transmitted between
parts of a system preferentially should have the interpreta-
tion of either transmitting state wholesale, or else have a
direct interpretation as transmitting a differential between
two previously synchronised bodies of state.
Transferring application state in bulk (externalising sec-

tions of an application) has been noted by some authors as
highly desirable for many authorial tasks — for example,
Kell [29] notes that several changes in JVM design would
be desirable in order to make it more “observable” for de-
bugging purposes, and Clark [12] notes that the choices of
some MIDI devices to respond to certain messages by simply
dumping some memory contents has greatly improved to
their longevity and adaptability.

6.3 Integration Domains and the Law of Demeter
It may seem that our recommendations that all design ele-
ments be exposed in a structured space of publicly address-
able names is at odds with a widely accepted maxim of object-
oriented design known as the Law of Demeter, which we
described earlier in section 4.3. Here we invoke a concept
taken from Kell [28], an “integration domain”, in order to
resolve this apparent discrepancy.

As defined in [28], an integration domain in the broadest
terms is “simply a set of languages or tools for performing
integration of software”. However, Kell [28] draws up some
important properties of such a domain expressed in its purest
form:

• It is likely to be less than Turing-powerful, in particu-
lar being deficient in looping and other core computa-
tional constructs

The Open Authorial Principle Onward! ’18, November 7–8, 2018, Boston, MA, USA

• It will not resemble a conventional language, being
declarative and minimal in form

• Primarily, it expresses relations between runtime val-
ues, predicated on the context in which they occur

We propose an aggressive program to assimilate the func-
tions of traditional programming languages and their com-
ponent systems, by stratifying them vertically into two parts.
On top, we have an integration domain which encodes not
only relations between runtime values, but also the struc-
ture of any adaptations expressed in the “virtual class” idiom
seen in section 4.3, using the selector structure described in
section 6.1.1 to predicate the addresses of these relations and
the targets of these adaptations. In order to retain the sym-
metry implied by our “algebra of differences”, all component
structure is expressed within the integration domain, that
is, it encodes all classes as well as virtual classes. Below the
integration domain, then, remains a highly impoverished
language dialect that just consists of free functions which ex-
press any remnant computation that could not be effectively
expressed in the integration domain. The free functions in
the impoverished language are addressible through stable
names in their own global namespace, and each of them
obeys the Law of Demeter strongly, in that they are pure
functions of their immediate arguments.
By assimilating the power of reference to the addresses

of state into an integration domain which is incapable of
computation, we thus remove the fragility risks that the LoD
was designed to protect against. The remaining expressions
in the base language can then satisfy the LoD strongly, and
the integration domain itself can satisfy a sublimated form
of the LoD by the use of selectors rather than explicit tree
paths to the state and components that it addresses.

7 Implications of Externalised Authoring
Following our arguments in section 6 on the necessarily cel-
lular structure of successful openly authorable systems, we
make further inferences about the approaches such open sys-
tems should take to implement adaptations and allow agency
and authoring to be externalised throughout a distributed
system.

7.1 Avatars Imply Static Dispatch
A central feature of every object-oriented system, and those
frommany other traditions, is its algorithm for dispatch. This
is the means by which the runtime selects amongst multi-
ple available choices for the implementation of a method
based on the environment around the call site. Both of the
highly adaptable level 3 systems that we surveyed in section
4 solved their reuse questions through use of a highly dy-
namic dispatch — that is, the runtime performs a complex
calculation at the point where an operation is invoked, in
order to determine which implementation should be selected.
We argue that strongly satisfying the OAP implies that we

take a different approach that provides externalisability via
more static dispatch.

Our externalisability obliges us toworkwith highly hetero-
geneous architectures, cooperating across machine, process,
language and platform boundaries. Rather than distribut-
ing agency via the common “proxy” model that we describe
in section 6.2, we recommend instead what we term the
“avatar” model, described in Clark [12], whereby a portion
of one system becomes a fully effective representative for a
portion of another, for some bounded period of time. This is
conformant with the REST model discussed in that section,
where entire resources are transferred, rather than answers
to limited questions. As a result of this heterogeneity, we
are guided towards models of dispatch that are likely to be
intelligible and computable in the widest variety of environ-
ments; an environment with highly dynamic dispatch cannot
be easily emulated in one without it. As an example, we may
find ourselves with highly undynamic peers implemented in
languages like C or GLSL shaders.

7.2 Wholesale Adaptation Requires Transactions
How could we expect to implement highly dynamic, context-
aware overall applications whilst locally maintaining our
commitment to strong externalisability? Drawing again from
the fund of techniques inspired by the web technologies dis-
cussed in earlier sections, we propose a system based on an
equivalence between wholesale adaptation and differential
adaptation. In just the same way as we propose in section
6.2 to interpret messages passed between systems as either
wholesale or differential transfers of state, we propose that
adaptations of a system be available in both differential and
wholesale varieties, where the latter is expensive but can be
honoured in environments with poor dynamism, and the for-
mer is cheap but requires dynamic, complex runtimes. Under
wholesale adaptation, a substantial part of an implementa-
tion is torn down, the dynamic state it accrued during its
runtime temporarily stored elsewhere, and it is then rebuilt
in the adapted form with the dynamic state reapplied. This
model of adaptation is described in Basman [5], there named
“Queen of Sheba adaptation”.

There are a few requirements on the implementation in
order to make this form of adaptation practical. Firstly, there
must be a filtration of its state which allows the dynamic por-
tion of it to be characterised and separated during the period
of destruction. This requirement is likely to be met naturally
as a result of meeting the requirements for strong externalis-
ability that the OAP already implies. Secondly, there needs to
be a capability to prevent observation of the system during
the time the wholesale adaptation is in progress. Traditional
idioms for such capabilities involve transactions or atomic
operations of similar kinds which are familiar from mature
persistence technologies.
Closing the circle on our discussion of web technologies,

these transactions are also familiar from naturally evolved

Onward! ’18, November 7–8, 2018, Boston, MA, USA Antranig Basman, Clayton Lewis, and Colin Clark

implementations of the DOM in modern web browsers. Web
developers will be familiar with the phenomenon whereby,
if a portion of the DOM is destroyed and re-rendered suf-
ficiently promptly, the rendered page will appear to adapt
itself continuously without the intervening destruction be-
coming apparent. Web browsers of recent years in fact oppor-
tunistically allocate “transactions” to batch together quickly
successive updates to the DOM so that the user experience
can be of a continuous adaptation. In the kinds of OA systems
we seek to build, such transactions will have to be explicitly
surfaced as primitives of the overall system and its protocols.
This scheme of allowing successive static systems to ape

a dynamic one can be compared to the dynamic => static
idiom of Edwards [16], or some of the techniques seen within
the Generative Programming tradition [14].

7.3 Minimising Divergence
The discussion in this section can be subsumed under a wider
one taken from [5]. There, the authors identify that a quan-
tity which needs to be minimised in an OA system is the
discrepancy between the state with which it can be authored
and the state into which it can be externalised at runtime. In
[5] this quantity is named divergence. Minimising divergence
is the underlying reason for the running theme in this paper
arguing for more static dispatch — a system with elaborate
method lookup and composition has more elaborate inter-
nal coordinates which are hard to expose during execution.
Similarly, as we allude in section 3.3.2, the mere use of func-
tion composition creates such internal coordinates, as does
the use of deeply nested function calls of any kind, these
coordinates being stored on the program stack whilst the
calls are in progress. Other kinds of divergence are enacted
by the storage of references to components transmitted as
function arguments, as is commonly seen in patterns such
as event listener subscription. Systems with greater diver-
gence impede distribution via the avatar pattern and hence
have degraded authorability. The integration domain in an
OA system should mediate all such divergent processes by
encoding the correspondence between their referents in a
declarative form.

8 Conclusion
We have presented a tower of increasingly sophisticated sce-
narios of reuse, stretching from classical object-orientation’s
reuse at level 1 as “Meyerian Reuse” up to more demanding
requirements characterised as level 4, which we argue rep-
resent everyday levels of reuse that arise routinely in real
architectures.
We have exhibited the Open Authorial Principle, which

summarises the requirements of all 4 levels of this tower
as well as encompassing a much wider terrain of reuse ca-
pabilities, some of which we articulate in this paper, and
others which remain to be explored. A key implication of the

principle is the elimination of horizons in the graph of au-
thors, by allowing program differences to be freely expressed
and combined as programs. This algebra gives rise to the
fundamentally different architectural strategies required for
successful openly authorable systems. These strategies also
promote more natural externalisation of designs, support-
ing more straightforward interactions with external systems
implemented in different processes, languages and idioms.

References
[1] Hal Abelson and Gerald Jay Sussman, Structure and Interpretation of

Computer Programs, MIT Press, 1985.
[2] John Backus Can programming be liberated from the von Neumann

style? A functional style and its algebra of programs, Communications
of the ACM Volume 21 Issue 8, pages 613-641, 1978.

[3] Antranig Basman, Philip Tchernavskij, Simon Bates and Michel
Beaudouin-Lafon An Anatomy of Interaction: Co-occurrences and Entan-
glements, ⟨Programming⟩, Proceedings of Salon des RefusésWorkshop,
2018.

[4] Antranig Basman If What We Made Were Real – Against Imperialism
and Cartesianism in Computer Science, Proceedings of the 28th Annual
PPIG Workshop, 2017.

[5] Antranig Basman, Luke Church, Clemens Klokmose, Colin Clark Soft-
ware and How it Lives On – Embedding Live Programs in the World
Around Them, Proceedings of the 27th Annual PPIG Workshop, 2016.

[6] Antranig Basman, Colin Clark and Clayton Lewis Harmonious Author-
ship from Different Representations, Proceedings of the 26th Annual
PPIG Workshop, 2015.

[7] Antranig Basman, Clayton Lewis, and Colin Clark To Inclusive Design
through Contextually Extended IoC, Proceedings of the ACM OOPSLA
Companion (Wavefront), 2011.

[8] Gérard Berry and Gérard Boudol, The chemical abstract machine, The-
oretical computer science, 96:1, 217–248, 1992.

[9] Gilad Bracha A DOMain of Shadows, blog posting at http://gbracha.
blogspot.co.uk/2014/09/a-domain-of-shadows.html

[10] Gilad Bracha, Peter von der Ahé, Vassili Bykov, Yaron Kashai, William
Maddox and Eliot Miranda Modules as Objects in Newspeak. Proceed-
ings of the 24th ECOOP, June 21-25 2010. Springer Verlag LNCS 2010.

[11] Frederick P. Brooks, Jr., The Mythical Man-month (Anniversary Ed.),
Addison-Wesley, 1995.

[12] Colin Clark and Antranig Basman Tracing a Paradigm for External-
ization: Avatars and the GPII Nexus, ⟨Programming⟩, Proceedings of
Salon des Refusés Workshop, 2017.

[13] James O. Coplien Curiously Recurring Template Patterns C++ Report:
24–27, 1995.

[14] Krzysztof Czarnecki and Ulrich W. Eisenecker. 2000. Generative Pro-
gramming: Methods, Tools, and Applications. ACM Press/Addison-
Wesley Publ. Co., New York, NY, USA.

[15] Daylight Chemical Information Systems, Inc. SMARTS - A Language
for Describing Molecular Patterns, http://www.daylight.com/dayhtml/
doc/theory/theory.smarts.html, 2008.

[16] Jonathan Edwards, dynamic => static: type as subtext, https://vimeo.
com/74314050, 2013

[17] Roy T. Fielding Architectural Styles and the Design of Network-based
Software Architectures, PhD thesis, University of California, Irvine,
2000.

[18] Martin Fowler Inversion of Control Containers and the Dependency Injec-
tion Pattern, 2004 urlhttps://martinfowler.com/articles/injection.html

[19] Richard P. Gabriel The structure of a programming language revolution,
Proceedings of the ACM Onward 2012, pages 195-214. Springer NY,
2012.

http://gbracha.blogspot.co.uk/2014/09/a-domain-of-shadows.html
http://gbracha.blogspot.co.uk/2014/09/a-domain-of-shadows.html
http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
https://vimeo.com/74314050
https://vimeo.com/74314050

The Open Authorial Principle Onward! ’18, November 7–8, 2018, Boston, MA, USA

[20] Erich Gamma, John Vlissides, Ralph Johnson, and Richard Helm De-
sign Patterns: Elements of Reusable Object-Oriented Software, Addison-
Wesley, 1994

[21] Philippe Le Hégaret. “The W3C Document Object Model (DOM)”.
World Wide Web Consortium, 2002 http://www.w3.org/2002/07/
26-dom-article.html

[22] Robert Hirschfeld, Pascal Costanza and Oscar Nierstrasz, Context-
Oriented Programming, Journal of Object Technology, 7 (3): 125–151,
March-April 2008.

[23] GPII Team The GPII Nexus, https://wiki.gpii.net/w/The_Nexus, 2017.
[24] GPII Team The GPII FlowManager, https://wiki.gpii.net/w/Flow_

Manager, 2017
[25] J. Lanier Why Gordian software has convinced me to believe in the

reality of cats and apples edge.org, November, 1. https://www.edge.
org/conversation/jaron_lanier-why-gordian-software-has-convinced-me\
-to-believe-in-the-reality-of-cats, 2003.

[26] Alan Kay “E-Mail of 2003-07-23”. Dr. Alan Kay on the Meaning of
“Object-Oriented Programming”. http://www.purl.org/stefan_ram/pub/
doc_kay_oop_en, 2003.

[27] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier and John Irwin Aspect-
oriented programming. Proceedings of the 11th ECOOP, 1997.

[28] Stephen Kell The mythical matched modules: overcoming the tyranny
of inflexible software construction, Proceedings of the 2009 OOPSLA
Companion (Onward), pages 881-888, ACM.

[29] Stephen Kell, Danilo Ansaloni, Walter Binder and Lukás̆ Marek The
JVM is not observable enough (and what to do about it), Proceedings of
the VMIL ’12, pages 33-38, ACM, New York.

[30] Clemens N. Klokmose, James R. Eagan, Siemen Baader, Wendy Mackay
and Michel Beaudouin-Lafon Webstrates: Shareable Dynamic Media,

Proceedings of the 2015 UIST, pages 280-290, ACM, New York.
[31] Karl Lieberherr and Ian Holland Assuring Good Style for Object-

oriented Programs, IEEE Software, September 1989, pages 38-48, 1989.
[32] Jens Lincke, Malte Appeltauer, Bastian Steinert and Robert Hirschfeld,

An open implementation for context-oriented layer composition in Con-
textJS, Science of Computer Programming, 76:12, pages 1194-1209,
2011.

[33] Liskov, B. Keynote address - data abstraction and hierarchy. ACM SIG-
PLAN Notices. 23 (5): 17–34, 1988

[34] Robert C. Martin The Open-Closed Principle, C++ Report, January 1996
[35] Bertrand Meyer Object-Oriented Software Construction, Prentice-Hall,

1988
[36] Matthias Springer, Fabio Niephaus, Robert Hirschfeld, and Hidehiko

MasuharamMatriona: Class Nesting with Parameterization in Squeak/S-
malltalk, In Proceedings of the Conference onModularity, March 14-17,
2016.

[37] David Ungar and Randall B. Smith The thing on the screen is supposed
to be the actual thing http://davidungar.net/Live2013/Live_2013.html,
2013.

[38] David Ungar, Harold Ossher and Doug Kimelman Korz: Simple, Sym-
metric, Subjective, Context-Oriented Programming, Proceedings of the
Fourth Symposium on New Ideas in Programming and Reflections on
Software (Onward), ACM, 2014

[39] Gregg Vanderheiden and Jutta Treviranus Creating a Global Public
Inclusive Infrastructure. Universal Access in Human-Computer Interac-
tion — Design for All and eInclusion, pages 517-526. Berlin: Springer,
2011.

[40] W3C XML Path Language (XPath) 3.1W3C Recommentation 21 March
2017.

http://www.w3.org/2002/07/26-dom-article.html
http://www.w3.org/2002/07/26-dom-article.html
https://wiki.gpii.net/w/The_Nexus
https://wiki.gpii.net/w/Flow_Manager
https://wiki.gpii.net/w/Flow_Manager
https://www.edge.org/conversation/jaron_lanier-why- gordian-software-has-convinced-me\ -to-believe-in-the-reality-of-cats
https://www.edge.org/conversation/jaron_lanier-why- gordian-software-has-convinced-me\ -to-believe-in-the-reality-of-cats
https://www.edge.org/conversation/jaron_lanier-why- gordian-software-has-convinced-me\ -to-believe-in-the-reality-of-cats
http://www.purl.org/stefan_ram/pub/doc_kay_oop_en
http://www.purl.org/stefan_ram/pub/doc_kay_oop_en
http://davidungar.net/Live2013/Live_2013.html

	Abstract
	0 The Open Authorial Principle
	1 Introduction
	1.1 Horizons in the Network of Authors
	1.2 An Algebra of Program Differences
	1.3 Reuse Levels

	2 Meyerian Reuse - Level 1
	2.1 Toy Example — a flowManager

	3 A Basic Reuse Scenario - Level 2
	3.1 Mitigating Scaling Costs
	3.2 Factories, Dependency Injection and Newspeak
	3.3 Containment through Inheritance
	3.4 Aspect-Oriented Programming

	4 More Demanding Reuse Scenarios - Levels 3 and 4
	4.1 Level 3 Reuse Variant - Class Hierarchy Inheritance
	4.2 Level 3 Reuse Variant - Independent Context Dimensions
	4.3 A Level 4 Reuse Scenario
	4.4 AOP, COP and Dispatch
	4.5 The Value of Internal Reuse
	4.6 Query-based Extension

	5 The Open Authorial Principle
	5.1 Reappraising Meyer's Principle
	5.2 Alternative Statement of the Principle
	5.3 The Program Addition Operator bold0mu mumu
	5.4 Distinction to Previous Program Algebras
	5.5 The Principle Cannot Be Provably or Fully Satisfied
	5.6 Economics of Development and Communication

	6 Addressability and Externalisability
	6.1 A New Cellular Model
	6.2 Externalisability and REST
	6.3 Integration Domains and the Law of Demeter

	7 Implications of Externalised Authoring
	7.1 Avatars Imply Static Dispatch
	7.2 Wholesale Adaptation Requires Transactions
	7.3 Minimising Divergence

	8 Conclusion
	References

